Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2007

PART I: Do three of the following problems.

- 1. Let G be a finite group, and let $H \leq G$ be a subgroup of G such that the index h = |G : H| satisfies h! < |G|. Show that H contains a normal subgroup of G other than the trivial subgroup containing only the identity element of G.
- 2. Let F be a field, let V be a finite-dimensional vector space over F, and let $f: V \to V$ be an F-linear operator on V (i.e., a linear transformation from V to itself). Prove that the following assertions are equivalent:
 - (i) Ker $f = \text{Ker } f^2$
 - (ii) $\operatorname{Im} f = \operatorname{Im} f^2$
 - (iii) $V = \operatorname{Im} f \oplus \operatorname{Ker} f$

Here, $f^2 = f \circ f$, and Ker and Im denote the kernel and the image, respectively, of the linear map in question.

- 3. Put $R = \{f(x) \in F[x] \mid f'(0) = 0\}$, where F is a field and f'(x) denotes the derivative of f(x); so R consists of all polynomials in F[x] whose coefficient at x equals 0.
 - (a) Show that R is a subring of F[x] and that the units of R are the nonzero constant polynomials.
 - (b) Show that both x^2 and x^3 are irreducible elements of R.
 - (c) Show that R is not a UFD.
- 4. Let $n \in \mathbb{Z}$ be such that $\sqrt{n} \notin \mathbb{Z}$. Consider the ring $R = \mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n} \mid a, b \in \mathbb{Z}\};$ this is a subring of \mathbb{C} . (You need not prove this.) Prove:
 - (a) For every $0 \neq z \in R$ there is a $0 \neq z' \in R$ such that $zz' \in \mathbb{Z}$.
 - (b) Conclude from (a) that the quotient ring R/I is finite for every nonzero ideal I of R.
 - (c) Conclude from (b) that every nonzero prime ideal of R is maximal.

Part II: Do two of the following problems.

- 1. Let $f: G \to H$ be a surjective homomorphism of groups. Prove:
 - (a) If P is a Sylow p-subgroup of G then f(P) is a Sylow p-subgroup of H.
 - (b) If Q is a Sylow p-subgroup of H then Q = f(P) for some Sylow p-subgroup P of G.
- 2. Let $R = \mathbb{C}[x_1, x_2, \dots, x_n]$, for some integer n > 1.
 - (a) Let I_1, I_2, \ldots, I_t be (finitely many) maximal ideals of R. Prove that $I_1 \cap I_2 \cap \cdots \cap I_t \neq (0)$, where (0) denotes the zero ideal of R.
 - (b) Prove that there exists an infinite set $\{I_{\alpha} \mid \alpha \in T\}$ of maximal ideals of R such that

$$\bigcap_{\alpha \in T} I_{\alpha} \neq (0).$$

(c) Prove that there exists an infinite set $\{I_{\beta} \mid \beta \in U\}$ of maximal ideals of R such that

$$\bigcap_{\beta \in U} I_{\beta} = (0)$$

(d) A nonzero left *R*-module *M* is *simple* provided the only left *R*-submodules of *M* are *M* itself and the zero module. Use (c) to prove that for some set $\{M_{\gamma} \mid \gamma \in V\}$ of simple left *R*-modules there exists an injective left *R*-module homomorphism:

$$R \to \prod_{\gamma \in V} M_{\gamma}$$

- 3. Let $\xi \in \mathbb{C}$ be a primitive 8th root of unity, and let $\sqrt[8]{2}$ be a real 8th root of 2. Let $f(x) = x^8 2 \in \mathbb{Q}[x]$, let K be the splitting field in \mathbb{C} of f(x) over \mathbb{Q} , and let G be the Galois group of K over \mathbb{Q} .
 - (a) Prove that $\mathbb{Q}(\xi) = \mathbb{Q}(i, \sqrt{2}).$
 - (b) Prove that $K = \mathbb{Q}(i, \sqrt[8]{2})$, and determine the index $[K : \mathbb{Q}]$.
 - (c) Prove that G is generated by elements σ and τ such that $\sigma^8 = \tau^2 = 1$ and $\sigma \tau = \tau \sigma^3$.