1 Part I: do 3 of 4

- 1. Consider a possibly non-uniform cable with linear density $\rho(x)$ moving in the threedimensional space. Let $\mathbf{r}(x,t)$ be the position vector of the material point $x \in [0, L]$ of the cable at time t.
 - (a) Give a definition of the tension vector T(x, t);
 - (b) Apply Newton's law of motion $\mathbf{F} = m\mathbf{a}$ to each segment $[x, x + \Delta x]$ of the cable to derive the equation of motion of the cable relating functions $\rho(x)$, $\mathbf{r}(x,t)$ and $\mathbf{T}(x,t)$.
- 2. Consider the heat propagating in a bimetal strip: To the left of the junction at x = 0 the temperature T(x, t) solves the heat equation

$$c_{-}\rho_{-}\frac{\partial T}{\partial t} = \kappa_{-}\frac{\partial^{2}T}{\partial x^{2}}.$$

To the right of the junction it satisfies

$$c_+\rho_+\frac{\partial T}{\partial t} = \kappa_+\frac{\partial^2 T}{\partial x^2},$$

where c_{\pm} are the specific heats of the two materials, ρ_{\pm} are the densities and κ_{\pm} are heat conductivities. What are the conditions that the temperature field T(x,t) has to satisfy at the junction x = 0?

3. Consider the Maxwell system of equations governing propagation of electromagnetic waves in vacuum.

$$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}, \quad \nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{B} = \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}, \quad \nabla \cdot \boldsymbol{E} = 0.$$

Show that each component of the electric field E solves a wave equation with the the speed of propagation c.

4. The "motion" of the electron in a hydrogen atom is governed by Schrödinger's equation

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m_e} \Delta \psi + V(\boldsymbol{x})\psi, \qquad V(\boldsymbol{x}) = -\frac{e^2}{4\pi\varepsilon_0|\boldsymbol{x}|}, \qquad \boldsymbol{x} \in \mathbb{R}^3, \ t > 0.$$

where \hbar is the Planck constant, m_e is the mass of the electron, e is its electrical charge and ε_0 is the dielectric permittivity of the vacuum. Express solutions $\psi(\boldsymbol{x},t)$ of the Schrödinger's equation in terms of the solutions $\phi(\boldsymbol{\xi},\tau)$ of

$$i\frac{\partial\phi}{\partial\tau} = -\frac{1}{2}\Delta\phi - \frac{\phi}{|\boldsymbol{\xi}|}, \qquad \boldsymbol{\zeta} \in \mathbb{R}^3, \ \tau > 0.$$

Give expressions of the characteristic time and length scales in terms of the physical parameters \hbar , e, m_e and ε_0 .

2 Part II: do 2 of 3

1. Find all possible speeds of propagation of acoustic waves in an elastic solid by examining plane wave solutions of

$$\mu \Delta \boldsymbol{u} + (\lambda + \mu) \nabla (\nabla \cdot \boldsymbol{u}) = \rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2}.$$

Note that plane wave solutions take the form $\boldsymbol{u}(\boldsymbol{x},t) = u_0(\boldsymbol{x} \cdot \boldsymbol{k} - \omega t)\boldsymbol{a}$, where u_0 is smooth scalar function of one variable, \boldsymbol{a} and \boldsymbol{k} are constant vectors in \mathbb{R}^3 and ω is a constant scalar.

2. Apply the Poincaré-Linstedt method to compute the correct *asymptotics of the period* of the solution of the differential equation

$$y'' + y = A(1 + \epsilon y^2), \quad y(0) = 1, \ y'(0) = 0$$

to first order in ϵ .

FYI, this is a rescaled version of the relativistic correction to the equation of motion of Mercury, where $y(\theta) = a/r(\theta)$, $A = GM/av^2$, $\epsilon = 3v^2/c^2$. Here *a* is the perihelion (smallest distance from the sun), *v* the speed of Mercury at perihelion, $r(\theta)$ —the distance from the sun when Mercury is θ radians along its orbit starting from the perihelion.

3. Consider a dynamical system (coming from a model of a fishery)

$$\dot{x} = x(1-x) - \frac{rx}{x+1}, \qquad x > -1.$$

- (a) Identify all equilibria on the half-line x > -1 and determine their stability.
- (b) Sketch the bifurcation diagram. Make sure to indicate stable and unstable branches clearly.
- (c) According to your bifurcation diagram, what is the bifurcation point and what is its type?