August 25, 2004

Comprehensive Examination

Department of Mathematics

Complex Analysis

Part I: Do three of the following problems

1. Suppose f(z) and $\overline{f(z)}$ are both analytic in an open connected subset S of C. Show that f(z) is constant in S.

2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function. Suppose f(z) maps the real axis to the real axis and the imaginary axis to the imaginary axis. Prove that $a_n = 0$ for all n even.

3. Let f(z) be analytic in $\mathbb{C} \setminus \{\pm 1\}$. Suppose there exist A, B > 0 such that for any $z \in \mathbb{C} \setminus \{\pm 1\}$,

$$|f(z)| \le \frac{A}{|z-1|} + \frac{B}{|z+1|}.$$

Show that $f(z) = \frac{p(z)}{z^2 - 1}$ where p(z) is a polynomial of degree less or equal to 1.

4. Use the calculus of residues to find

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 2} \, dx \text{ and } \int_{-\infty}^{\infty} \frac{1}{(x^2 + 2x + 2)^4} \, dx.$$

1

Part II: Do two of the following problems

1. Let f(z) be analytic on an open set G that contains the closed unit disc $\overline{D} = \{z \in \mathbf{C} : |z| \leq 1\}$, and let $\{f_n(z)\}$ be a sequence of analytic functions that converges to f(z) uniformly in G. Suppose that for any z with |z| = 1, $f(z) \neq 0$. Show that for all n sufficiently large $f_n(z)$ has the same number of zeros in \overline{D} as f(z).

2. Let $H = \{z \in \mathbb{C} : Im(z) > 0\}$ be the upper half-plane, and let $f : H \to H$ be an analytic function such that f(i) = i.

- (a) Show that $|f'(i)| \leq 1$.
- (b) Show that if |f'(i)| = 1, then f(z) is a Möbius transformation.

3. Show that any function f(z) meromorphic in **C** can be written as $f(z) = \frac{h(z)}{g(z)}$ where h(z) and g(z) are entire functions with |h(z)| + |g(z)| > 0 for any $z \in \mathbf{C}$.