Comprehensive Examination

Department of Mathematics

Complex Analysis

Part I: Do three of the following problems

1. Let f(z) = u(x, y) + iv(x, y), where u(x, y) and v(x, y) are real-valued, be an entire function. Suppose $u(x, y) = x^3 - 3x + \alpha x y^2$ for some real number α . Determine all possible values of α and find a function f(z) that corresponds to each α (note that f(z) is uniquely determined up to an additive constant).

2. Let f(z) be analytic in an open set G that contains the closed unit disc \overline{D} . Suppose |f(z)| = 1 for any z with |z| = 1.

(a) Show that f(z) maps \overline{D} to \overline{D} .

(b) Suppose f(z) has no zeros in D. Show that $f(z) = e^{i\theta}$, a constant function of absolute value 1.

(c) More generally, show that f(z) has only finitely many zeros in D and if $z_1, ..., z_n$ are the zeros of f(z) in D, listed with multiplicities, then

$$f(z) = e^{i\theta} \prod_{k=1}^{n} \frac{z - z_k}{1 - \bar{z_k}z}.$$

3. Show that $\int_{-\infty}^{\infty} \frac{e^{wx}}{x^2 - x + 1} dx$ converges for any $w \in \mathbb{C}$ with $Re(w) \leq 0$ and use the calculus of residues to determine

$$\int_{-\infty}^{\infty} \frac{e^{-ax} \cos bx}{x^2 - x + 1} \, dx \text{ and } \int_{-\infty}^{\infty} \frac{e^{-ax} \sin bx}{x^2 - x + 1} \, dx \text{ where } a, b \in \mathbb{R}, \ a \ge 0$$

4. (a) Give an example of a conformal map from the unit disc D onto $\mathbb{C} \setminus \{0\}$. Hint: first transform D into the upper half-plane.

(b) Show that there exists no conformal map from $\mathbb{C} \setminus \{0\}$ onto D.

Part II: Do two of the following problems

1. Let G be a simply connected domain, $G \neq \mathbb{C}$, and let $a \in G$. Let f(z) be a holomorphic function from G to G such that f(a) = a.

(a) Show that $|f'(a)| \leq 1$.

(b) Show that |f'(a)| = 1 if and only if f(z) is bijective.

2. Suppose f(z) is a meromorphic function on \mathbb{C} such that f(z+1) = f(z) and f(z+i) = f(z). Let $\Pi = \{z \in \mathbb{C} : 0 \leq Re(z) \leq 1, 0 \leq Im(z) \leq 1\}$. Suppose further that f(z) has no zeros or poles on $\partial \Pi$. Let N and P denote respectively the numbers of zeros and poles of f(z) in Π .

(a) Show that $P = N \ge 2$.

(b) Let $z_1,..., z_N$ and $w_1,..., w_N$ be the zeros and the poles of f(z) in Π , listed with multiplicities. Show that

$$z_1 + \ldots + z_N - w_1 - \ldots - w_N = m + ni$$
 for some $m, n \in \mathbb{Z}$.

3. (a) Construct an entire function with a zero of order n^3 at every positive integer n and no other zeros. Justify every statement you make.

(b) Construct a meromorphic function with a simple pole with residue 1 at \sqrt{n} for every positive integer n and no other poles. Justify every statement you make.