Ph.D. Comprehensive Examination in Complex Analysis Department of Mathematics, Temple University

August, 2011

Part I: Do three of the following problems

1. Let u(x, y) be a polynomial of degree n that is harmonic in \mathbb{C} . Show that $u(x, y) = \Re(f(z))$ where f(z) is a polynomial of degree n.

2. Let f(z) be an analytic function from the open unit disc D onto D. Let $M(r) = \max\{|f(z)|: |z| = r\}$.

(i) Show that M(r) is a strictly increasing function of r.

(ii) Show that $\lim_{r \to 1^{-}} M(r) = 1$.

3. Use the calculus of residues to find the principal value of $\int_{-\infty}^{\infty} \frac{dx}{x(2x^2 - 2x + 1)}$. Here the principal value of $\int_{-\infty}^{\infty} f(x)dx$ means $\lim_{\epsilon \to 0+} \left(\int_{-\infty}^{-\epsilon} f(x)dx + \int_{\epsilon}^{\infty} f(x)dx \right)$.

4. (i) Find a bijective conformal mapping from $\mathbb{C} - [1, \infty)$ to the open unit disc D.

(ii) Find a conformal mapping from $\mathbb{C} - [0, 1]$ onto the open unit disc D. Can this map be bijective? Why or why not?

Part II: Do two of the following problems

1. Let $G \subset \mathbb{C}$ be a region in \mathbb{C} and let I = [a, b] be a line segment, $I \subset G$. Let f(z) be continuous in G and analytic in G - I. Show that f(z) is analytic in G.

2. Let f(z) be analytic in $\{z : 0 < |z| < 1\}$ except for a sequence of isolated non removable singularities $\{z_n\}$ with $\lim_{n\to\infty} z_n = 0$. Show that any $w \in \mathbb{C}$ and any $\epsilon, \delta > 0$, there exists a $z \neq z_n$ with $0 < |z| < \delta$ such that $|f(z) - w| < \epsilon$.

3. Let G be a region in \mathbb{C} that contains the closed unit disc \overline{D} and let f(z,t) be a continuous function on $G \times [0,1]$ that is analytic in z.

(i) Show that f'(z,t) is continuous on $G \times [0,1]$, where f'(z,t) denotes $\frac{\partial}{\partial z} f(z,t)$.

(ii) Suppose $f(z,t) \neq 0$ for z with |z| = 1 and any $t \in [0,1]$. Show that f(z,1) has the same number of zeroes in D, counting multiplicities, as f(z,0).