Ph.D. Comprehensive Examination Complex Analysis August 2013

Part I. Do three of these problems.

I.1 Show that there is no analytic function f on the annulus $\{z : 1 < |z| < 2\}$ such that $e^{f(z)} = z$ for every z in the annulus.

I.2 For -1 < a < 3 compute

$$\int_0^\infty \frac{x^a}{(1+x^2)^2} \, dx$$

Prove all claims.

I.3 Find a conformal map from $G = \{z : |z| < 1, \Re(z) > 0\}$ onto $D = \{z : |z| < 1\}$.

I.4 Find the number of zeros of $z^7 + 4z^4 + z^3 + 1$ in the annulus $\{z : 1 < |z| < 2\}$.

Part II. Do two of these problems.

II.1 Let G be a bounded simply connected domain and $a \in G$. Suppose $f : G \to G$ is an analytic function such that f(a) = a. Prove that f is one-to-one and onto if and only if |f'(a)| = 1.

II.2 Let G be an open connected subset of \mathbb{C} and let $\{f_n\}_n$ be a sequence of analytic functions on G that are uniformly bounded. Let S be the set of points in G where the sequence is convergent. If S has a limit point in G, prove that $\{f_n\}_n$ converges uniformly on compact subsets of G.

II.3 Find a function f, analytic on |z| < 1 and such that f(z) = 0 if and only if $z = 1 - \frac{1}{\sqrt{k}}$, $k = 1, 2, \ldots$ You may leave your answer as an infinite product. Justify all claims.