Ph.D. Comprehensive Examination in Complex Analysis Department of Mathematics, Temple University

January, 2008

Part I: Do three of the following problems

1. Find a harmonic function u(x, y) on the upper half-plane $H = \{x + iy : y > 0\}$ such that

$$\lim_{y \to 0^+} u(x, y) = \begin{cases} 0, & \text{if } x > 0\\ 1, & \text{if } x < 0 \end{cases}$$

Also find a harmonic conjugate of u(x, y).

2. Let f(z) and g(z) be analytic in an open connected set G. Suppose that for every $z \in G$, $|f(z)| \leq |g(z)|$.

(a) Show that there exists a function h(z) analytic in G such that f(z) = g(z)h(z).

(b) Show that either |f(z)| < |g(z)| for all $z \in G$ or there exists a constat c such that f(z) = cg(z).

3. Let z_1, z_2, z_3 be three distinct points on the unit circle $\{z : |z| = 1\}$. Recall that for $z \in \mathbb{C}_{\infty}$ the cross ratio (z, z_1, z_2, z_3) is defined as the image of z under the unique Möbius transformation that takes z_1 to 1, z_2 to 0 and z_3 to ∞ .

(a) Determine with proof all values of z such that $(z, z_1, z_2, z_3) \in \mathbb{R}_{\infty}$.

(b) Suppose $(0, z_1, z_2, z_3) = i$. Find (∞, z_1, z_2, z_3) and the set $\{(z, z_1, z_2, z_3) : |z| < 1\}$.

4. Evaluate $\int_0^\infty \frac{\log x}{(1+x^2)^2} \, dx.$

Part II: Do two of the following problems

1. Show that there does not exist a bijective analytic function from the punctured unit disc $\{z : 0 < |z| < 1\}$ to the annulus $\{z : 1 < |z| < 2\}$.

2. Let $\{f_n(z)\}$ be a sequence of analytic functions on a region D that converges to a function f(z) uniformly on every compact subset of D. Suppose each $f_n(z)$ has no zeros in D. Prove that either $f(z) \equiv 0$ on D or f(z) has no zeros in D.

3. Give an example of an analytic function f(z) on the open unit disc $D = \{z : |z| < 1\}$ such that f(z) = 0 if and only if

$$z = 1 - \frac{1}{k}$$
 for $k = 1, 2, 3...$