Ph.D. Comprehensive Examination Complex Analysis Section January 2010

Part I. Do three of these problems.

I.1. Evaluate the improper integral

$$\int_0^\infty \frac{x \sin x}{1 + x^2} \, dx.$$

Prove all claims.

I.2. Let f(z) and g(z) be entire. Suppose that for any $z \in \mathbb{C}$, $|f(z)| \leq |g(z)|$. Prove that f(z) = cg(z) for some $c \in \mathbb{C}$ with $|c| \leq 1$.

I.3. Let

$$s_n(z) = \sum_{k=-n}^n \frac{1}{z-k}, \quad n = 1, 2, \dots$$

and let $s(z) = \lim_{n \to \infty} s_n(z)$. Show that the sequence $\{s_n(z)\}$ converges uniformly on every open bounded set $G \subset \mathbb{C}$ with $\overline{G} \cap \mathbb{Z} = \emptyset$ and that s(z) is a meromorphic function of z with simple poles at $z = k, k \in \mathbb{Z}$. Moreover, show that s(z) is periodic with period 1.

I.4. Let $D = \{z : |z| < 1\}$. Find $u : D \to \mathbb{R}$ harmonic and such that for any $z_0 \in \partial D$ with $\operatorname{Re} z_0 \neq 0$,

$$\lim_{z \to z_0} u(z) = \begin{cases} 1 & \text{if } \operatorname{Re} z_0 > 0 \\ -1 & \text{if } \operatorname{Re} z_0 < 0. \end{cases}$$

Hint: Can you solve a similar problem on the strip $\{\zeta : -1 < \text{Im } \zeta < 1\}$?

Part II. Do two of these problems.

II.1. Let $G \subset \mathbb{C}$ be a bounded open set, $\{f_k\}_{k=1}^{\infty}$ a sequence of continuous functions $\overline{G} \to \mathbb{C}$, holomorphic in G. Suppose that the sequence converges uniformly on the boundary of G to some function. Show that $\{f_k\}_{k=1}^{\infty}$ converges in G to an analytic function.

II.2. Let $G \subset \mathbb{C}$ be open, $a \in G$, and r > 0 such that $\overline{B(a,r)} \subset G$. Let $f : [0,1] \times G \to \mathbb{C}$ be continuous, holomorphic in $z \in G$, and such that $f(t,z) \neq 0$ when $t \in [0,1]$ and |z-a| = r. Show that the functions $z \mapsto f(0,z)$ and $z \mapsto f(1,z)$ have the same number of zeros in B(a,r) counting multiplicity.

II.3. Let G be a simply connected domain, $G \neq \mathbb{C}$, $a \in G$, and $f : G \to D$ a bijective analytic map from G to the open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$ such that f(a) = 0. Show that for any analytic map $g : G \to D$ such that g(a) = 0, $|g'(a)| \leq |f'(a)|$. Moreover, show that if |g'(a)| = |f'(a)|, then g(z) is also a bijective analytic map from G to D.