Ph.D. Comprehensive Examination in Complex Analysis Department of Mathematics, Temple University

January 2012

Part I. Do three of these problems.

I.1 (i) Show that $u(x, y) = \log(x^2 + y^2)$ is harmonic in $\mathbb{C} \setminus \{0\}$.

(ii) Find a harmonic conjugate of u(x, y) in $\mathbb{C} \setminus \{x \in \mathbb{R} : x \ge 0\}$. Please justify your answer briefly

(iii) Show that u(x, y) has no harmonic conjugate in $\mathbb{C} \setminus \{0\}$.

I.2 Let f(z) be an entire function.

(i) Suppose that for all z sufficiently large $|f(z)| \le \frac{|z|^4}{1+|z|^2}$. Show that f(z) is a polynomial of degree less or equal to 2.

(ii) Suppose
$$|f(z)| \le \frac{|z|^4}{1+|z|^2}$$
 for all $z \in \mathbb{C}$. Show that $f(z) = 0$.

I.3 Let f(z) and g(z) be analytic in $B(z_0, r) \setminus \{z_0\}$ for some r > 0.

(i) Suppose $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} g(z) = 0$ and that $\lim_{z \to z_0} \frac{f'(z)}{g'(z)}$ exists. Show that $\lim_{z \to z_0} \frac{f(z)}{g(z)}$ exists and equals $\lim_{z \to z_0} \frac{f'(z)}{g'(z)}$.

(ii) Suppose $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} g(z) = \infty$ and that $\lim_{z \to z_0} \frac{f'(z)}{g'(z)}$ exists. Show that $\lim_{z \to z_0} \frac{f(z)}{g(z)}$ exists and equals $\lim_{z \to z_0} \frac{f'(z)}{g'(z)}$.

I.4 Use the calculus of residues to find $\int_0^\infty \frac{\log x \, dx}{(x^2+1)^2}$.

Part II. Do two of these problems.

II.1 Let γ be a rectifiable closed path and f(z) a meromorphic function in \mathbb{C} such that no zeros or poles of f(z) lie on γ .

- (i) Show that there exist at most finitely many zeros z_1, \ldots, z_k and at most finitely many poles p_1, \ldots, p_ℓ of f(z) such that $n(\gamma, z_i) \neq 0$ and $n(\gamma, p_j) \neq 0$.
- (ii) Show that $\int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=1}^{k} n(\gamma, z_i) m_i \sum_{j=1}^{\ell} n(\gamma, p_j) n_j$ where m_i is the order of the zero of f(z) at z_i and n_j is the order of the pole of f(z) at p_j .

II.2 Let $\{f_n(z)\}\$ be a sequence of functions analytic in the open unit disc B(0, 1) and continuous on the closed unit disc $\overline{B}(0, 1)$.

- (i) Suppose the sequence $\{f_n(z)\}$ converges uniformly on $\partial B(0,1)$. Show that $\{f_n(z)\}$ converges uniformly in $\overline{B}(0,1)$.
- (ii) Let $f(z) = \lim_{n \to \infty} f_n(z)$. Show that f(z) is analytic in B(0, 1) and that $\{f'_n(z)\}$ converges to f'(z) uniformly on every B(0, r), r < 1.

II.3 Let
$$p_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$$
.

- (i) Show that for any r > 0 there exists an $N \in \mathbb{Z}$ such that for all $n > N p_n(z)$ has no zeros in B(0, r).
- (ii) Show that for any r > 0 and any $n \ge 0$ there exists z with |z| = r such that $|p_n(z)| = |e^z|$.