PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

Fall 1994

Part I. Do three (3) of these problems.

I.1. (a) Give an example of a function f(x) such that $\lim_{m\to\infty} \int_0^m f(x) dx$ exists, but $\lim_{m\to\infty} \int_0^m |f(x)| dx$ does not exist.

(b) Give an example of a function f(x) such that $\lim_{\varepsilon \to 0} \int_0^{\varepsilon} f(x) dx$ exists, but $\lim_{\varepsilon \to 0} \int_0^m |f(x)| dx$ does not exist.

I.2. Give an example of a countable dense subset for each of the following:

- (a) ℓ^2 (in the ℓ^2 norm).
- (b) $L^{2}[0, 1]$ (in the L^{2} norm).
- (c) $L^1[0,1]$ (in the L^1 norm).

I.3. Let f_n be a sequence of absolutely convergent continuous functions in [a, b] such that $f_n(a) = 0$. Suppose that f'_n is a Cauchy sequence in $L^1[a, b]$. Show that there exists f, absolutely continuous in [a, b], such that $f_n \to f$ uniformly in [a, b].

I.4. Let f be a non-negative function in \mathbb{R} . Suppose that the double integral

$$\iint_{\mathbb{R}^2} f(4x)f(x-3y)dxdy = 2.$$

Calculate $\int_{-\infty}^{\infty} f(x) dx$.

Part II. Do two (2) of these problems.

II.1. Prove: Every L^1 function is continuous in the L^1 norm, that is,

$$\lim_{h \to 0} \int_0^1 |f(x+h) - f(x)| dx = 0$$

Note: You may assume f vanishes outside [0, 1].

II.2. Given a collection of closed subintervals of [0, 1] such that any two of the subintervals have a point in common, prove that all of them have a point in common.

II.3. Let p > 1, and $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $g \in L^q[0, 1]$, then

$$\ell(f) = \int_0^1 f(x)g(x)/, dx$$

is a continuous linear functional on $L^p[0,1]$. Find $\|\ell\|$