Mathematics Real Analysis Ph.D. Qualifying Exam

All functions on \mathbf{R}^d are assumed Lebesgue measurable, all integrals are against Lebesgue measure, and $L^p = L^p(\mathbf{R}^d)$. Throughout $\sum \text{means } \sum_{n=1}^{\infty}$.

Part I. (Select 3 questions.)

- 1. Given $f_n : \mathbf{R}^d \to \mathbf{R}, n \ge 1$, assume that $\sum f_n$ converges uniformly on \mathbf{R}^d , and let $a \in \mathbf{R}^d$. Suppose that $\lim_{x\to a} f_n(x)$ exists for all $n \ge 1$. Show that $\lim_{x\to a} \sum f_n(x) = \sum \lim_{x\to a} f_n(x)$.
- 2. Show that a compact metric space has a countable dense subset.
- 3. Given an infinite sequence (c_n) of complex numbers, let $f(x) = \sum c_n e^{inx}$. Show:
 - 1. If $\sum |c_n| < \infty$, then f is continuous on **R**.
 - 2. If $\sum n|c_n| < \infty$, then f is continuously differentiable on **R**.
- 4. Find all p, q real such that the integral $\int_0^1 x^p (-\log x)^q dx$ is finite.

Part II. (Select 2 questions.)

- 1. Suppose that f is continuous on [0, 1], differentiable on (0, 1), f(0) = 0, and f'(0+) exists. Show that $f(x)x^{-3/2}$ is integrable over (0, 1).
- 2. Let $g : \mathbf{R}^d \to \mathbf{R}$ be nonnegative with $\int_{\mathbf{R}^d} g(y) \, dy = 1$, let $g_{\epsilon}(x) = \epsilon^{-d} g(x/\epsilon)$ for $\epsilon > 0$, and define $f_{\epsilon}(x) = (g_{\epsilon} \star f)(x) = \int_{\mathbf{R}^d} g_{\epsilon}(y) f(x-y) \, dy$. If $f : \mathbf{R}^d \to \mathbf{R}$ is continuous and bounded, then show that $f_{\epsilon} \to f$ as $\epsilon \to 0$ uniformly on compact subsets of \mathbf{R}^d (Hint change of variables).
- 3. Fix $p \ge 1$. Assume without proof that the set of continuous functions with compact support is dense in L^p . Let $f \in L^p$ and, for $t \in \mathbf{R}^d$, let $f_t(x) = f(x+t)$ be the translate of f by t. Show
 - 1. The map $t \mapsto f_t$ is continuous from $\mathbf{R}^d \to L^p$, and
 - 2. $f_{\epsilon} \to f$ in L^p as $\epsilon \to 0$, where $f_{\epsilon} = g_{\epsilon} \star f$.