Mathematics Real Analysis Ph.D. Qualifying Exam

All functions on \mathbf{R}^d are assumed Lebesgue measurable and all integrals are against Lebesgue measure. You may not use or refer to the Riemann integral in any of your answers; everything must be justified within the context of the Lebesgue theorems (MCT, DCT, LDT, ...).

Part I. (Select 3 questions.)

- 1. Suppose (f_n) and (g_n) converge uniformly to f and g, respectively, on [a, b].
 - (a) Show that if each f_n , $n \ge 1$, is bounded and f is bounded, then (f_n) is uniformly bounded.
 - (b) Show that if (f_n) and (g_n) are both uniformly bounded, then (f_ng_n) converges uniformly to fg.
- 2. Give the construction of the Cantor ternary set C in [0, 1] and prove that
 - (a) C is closed.
 - (b) C is perfect.
 - (c) The Lebesgue measure of C is zero.
 - (d) C does not contain any open interval.
- 3. Let $f_n, n \ge 1$, and f be in $L^1(\mathbf{R}^d)$ and suppose $f_n \to f$ in $L^1(\mathbf{R}^d)$ as $n \to \infty$. Show that there is a subsequence (f_{n_k}) which converges to f almost everywhere.
- 4. Let f be a continuous function on a compact metric space. Prove that f is uniformly continuous.

Part II. (Select 2 questions.)

- 1. Let f be a non-negative measurable function defined on \mathbf{R}^d . Show that there exist simple measurable functions f_n , $n \ge 1$, defined on \mathbf{R}^d , such that f_n increases to f pointwise, as $n \to \infty$.
- 2. (a) Show that $\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$ is finite for s > 0.
 - (b) Use integration by parts justifying every step to show $\Gamma(s+1) = s\Gamma(s)$ for s > 0.
 - (c) Prove that Γ is continuous on $(0, \infty)$.
 - (d) Show that $\Gamma'(s) = \int_0^\infty e^{-x} x^{s-1} \ln x \, dx$ for s > 0.
- 3. Let $i = \sqrt{-1}$ and let

$$F(y) = \int_0^\infty e^{-ty} \frac{1 - e^{it}}{t} \, dt, \qquad y > 0.$$

- (a) Show that $F'(y) = \int_0^\infty e^{-ty} (e^{it} 1) dt$ for y > 0.
- (b) Show that

$$F'(y) = \frac{1}{y-i} - \frac{1}{y}, \qquad y > 0$$

(c) Let f(y) be the imaginary part of F(y). Show that $f(b) - f(a) = \arctan b - \arctan a$ for b > a > 0. (d) Show that

$$\int_0^\infty e^{-ty} \frac{\sin t}{t} \, dt = \frac{\pi}{2} - \arctan y, \qquad y > 0.$$