Real Analysis Ph.D. Qualifying Exam Temple University August 28, 2009

Part I. (Select 3 questions.)

- 1. Let *f* be a continuous function in [0, 1] such that *f* is absolutely continuous in $[0, \epsilon]$ for every $\epsilon, 0 < \epsilon < 1$. Show that *f* is absolutely continuous in [0, 1].
- 2. Let $f(x) = x^2 \sin(1/x^3)$ for $x \in [-1, 1]$, $x \neq 0$, and f(0) = 0. Show that f is differentiable on [-1, 1] but f' is unbounded on [-1, 1].
- 3. Let E_k be a sequence of sets. The upper limit of the sequence E_k is the set $E^* = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j$. Let $\chi_E(x)$ denote the characteristic function of the set *E*. Prove that

$$\limsup_{k\to\infty}\chi_{E_k}(x)=\chi_{E^*}(x).$$

- 4. Consider the sequence $f_n(x) = n^2 x e^{-n x^2}$ on $[1, +\infty)$. Prove that
 - (a) f_n converges uniformly on $[1, +\infty)$;
 - (b) f_n converges in measure on $[1, +\infty)$; (c) $\int_1^{\infty} f_n(x) dx \to 0$ as $n \to \infty$.

Part II. (Select 2 questions.)

1. Let f_1, \dots, f_k be continuous real valued functions on the interval [a, b]. Show that the set $\{f_1, \dots, f_k\}$ is linearly dependent on [a, b] over the scalar field **R** if and only if the $k \times k$ matrix with entries

$$\langle f_i, f_j \rangle = \int_a^b f_i(x) f_j(x) dx$$

has determinant zero.

2. Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of Lebesgue measurable subsets of [0, 1] such that $\lim_{k\to\infty} |E_k| = 1$. Prove that given $0 < \varepsilon < 1$ there exists a subsequence $\{E_{k_j}\}_{j=1}^{\infty}$ such that $\left|\bigcap_{j=1}^{\infty} E_{k_j}\right| > \varepsilon$.

HINT: we have $\lim_{k\to\infty} |E_k^c| = 0$ and so given *j* there exists k_j such that $|E_{k_j}^c| < (1 - \varepsilon)/2^j$. Hence $\left|\bigcup_{j=1}^{\infty} E_{k_j}^c\right| < 1 - \varepsilon$.

3. Let A be a measurable subset of $[0, 2\pi]$. Assume the Riemann-Lebesgue lemma saying that

$$\lim_{n \to \infty} \int_A \cos(nx) \, dx = \lim_{n \to \infty} \int_A \sin(nx) \, dx = 0.$$

Deduce that for each sequence x_n of real numbers we have

$$\lim_{n \to \infty} \int_A \cos^2(nx + x_n) \, dx = \frac{1}{2} |A|.$$