Real Analysis Ph.D. Qualifying Exam, Temple University, August 25, 2010

Part I. (Select 3 questions.)

1. Prove that the series
$$f(x) = \sum_{n=0}^{\infty} \frac{\cos(\sqrt{n}x)}{1+n^2}$$
 converges uniformly in **R**, and show that
$$\lim_{R \to +\infty} \frac{1}{2R} \int_{-R}^{R} f(x) dx = 1.$$

- 2. Given two sets $A, B \subset \mathbb{R}^n$ define $A + B = \{x + y, x \in A, y \in B\}$. Prove that
 - (a) if A is open or B is open, then A + B is open,
 - (b) if A is compact and B is closed, then A + B is closed.
 - (c) in \mathbb{R}^2 take $A = \{(x, 0) : x \in \mathbb{R}\}$ and $B = \{(y, 1/y) : y > 0\}$, show A and B are both closed and A + B is not.
- 3. Let *f* be a continuous function in the closed interval [0, 1]. Prove that

$$\lim_{a \to 0^+} a \int_0^1 x^{a-1} f(x) \, dx = f(0).$$

4. Let $f : \mathbf{R} \to \mathbf{R}$ be continuous. Suppose that $f\left(\sum_{i=1}^{N} \lambda_i x_i\right) \leq \sum_{i=1}^{N} \lambda_i f(x_i)$ for all $x_i \in \mathbf{R}$ and for all $\lambda_i \geq 0$ such that $\sum_{i=1}^{N} \lambda_i = 1$, that is, f is convex. Prove that

$$f(x) \le \frac{1}{2h} \int_{x-h}^{x+h} f(t) \, dt$$

for all $x \in \mathbf{R}$ and h > 0. Hint: consider the partition of [x-h, x+h] given by $t_i = x-h+\frac{2h}{N}i$ for $i = 0, 1, \dots, N$. Estimate the corresponding Riemann sum using the convexity.

Part II. (Select 2 questions.)

- 1. If $f_n : [0,1] \to \mathbf{R}$ are measurable with $f_n \to 0$ a.e., and $\left| \int_0^1 f_n(x) dx \right| \le C$ for all n, then can you conclude that $\lim_{n\to\infty} \int_0^1 f_n(x) dx = 0$?
- 2. Let $f \in L^2[0, 1]$. Show that $F(x) = \int_0^x f(t) dt$ is continuous in [0, 1] and satisfies $\lim_{x \to 0^+} x^{-1/2} F(x) = 0.$
- 3. Let $A, B \subset [0, 1]$ measurable sets with |A| > 1/2 and |B| > 1/2.
 - (a) Prove that $|A \cap (1 B)| > 0$ (recall $1 B = \{1 x : x \in B\}$).
 - (b) Show that the function $f(x) = \int_{\mathbf{R}} \chi_A(y) \chi_B(x y) \, dy$ is well defined for all $x \in \mathbf{R}$.
 - (c) Conclude that there exist $y \in A$ and $z \in B$ such that y + z = 1.