PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

Spring 1999

Justify carefully all reasoning.

Part I. Do three (3) of these problems.

I.1. Define the Lebesgue measure |A| of a set $A \subset \mathbf{R}$. Show that

$$|A| = \inf \left\{ \sum_{n=1}^{\infty} \operatorname{diam}(A_n) : A \subset \bigcup_{n=1}^{\infty} A_n, A_n \text{ arbitrary} \right\}.$$

Here $diam(A) = sup\{|x - y| : x, y \in A\}$ is the diameter of A.

I.2. Show that

$$F(x) = \int_0^\infty \frac{\sin\left(xt^2\right)}{1+t^2} dt, \qquad x \in \mathbf{R}$$

is continuous, where "dt" denotes Lebesgue measure on **R**.

I.3. Let f_n be a sequence of absolutely convergent continuous functions in [a, b] such that $f_n(a) = 0$. Suppose that f'_n is a Cauchy sequence in $L^1[a, b]$. Show that there exists f, absolutely continuous in [a, b], such that $f_n \to f$ uniformly in [a, b].

I.4. Let f be a non-negative function on **R**, let g(x,y) = f(4x)f(x-3y), and let μ_n denote Lebesgue measure on **R**ⁿ. Suppose that $\int_{\mathbf{R}^2} g \, d\mu_2 = 2$. Calculate $\int_{\mathbf{R}} f \, d\mu_1$.

Part II. Do two (2) of these problems.

II.1. Let $f: [0,1] \to \mathbf{R}$ satisfy $1 \le f(x) \le 2$ and let

$$N(p) = \left(\int_0^1 f(x)^p \, dx\right)^{1/p}, \qquad p \neq 0.$$

- (1) Compute $\lim_{p\to\infty} N(p)$.
- (2) Compute $\lim_{p\to 0} N(p)$.
- (3) Compute $\lim_{p\to-\infty} N(p)$.

II.2. Use the DCT on $(0, \infty)$ to compute

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{t}{n} \right)^n e^{it} dt. \qquad (i = \sqrt{-1})$$

II.3. Let *E* be the set of $x \in [0, 2\pi]$ such that $\lim_{n\to\infty} e^{inx}$ exists. Show that the Lebesgue measure of *E* is zero.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$