Real Analysis Qualifying Exam
Department of Mathematics, Temple University
January 14, 2005

All integrals are Lebesgue integrals; do not use the Riemann integral or use any facts relating
to it. Justify your reasoning carefully and clearly.
Part 1
Please select 3 of these problems.

1. Suppose f : R — R is continuous at all x and differentiable at all nonzero x. Assume f’(x) — 0
as x — 0. Show that f is differentiable at 0.

2. Suppose f(x) is defined on [-1, 1] and f"”(x) is continuous. Show that

1. There is a continuous function g : [-1,1] — R such that
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2. Show that the series
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converges.

3. Let A C R be compact, let xg € A, and let (x,) C A be a sequence. Assume every convergent
subsequence of (x,) converges to xo.

1. Show that (x,) converges.

2. Show that if A is not compact, the result in part 1 is not necessarily true.
4. Given a sequence (a;,), let a;, = sup{ay : k > n}, n > 1, be the corresponding upper sequence.
Show that either the sequence (a},) is eventually constant or a;, = max{a; : k > n} for all n > 1.
Part I1
Please select 2 of these problems.
1. Let A ={(a,b):a>0,b > 0}. Show that
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is a continuous function on A.

2. Suppose f and g are continuous functions on R and g(x + 1) = g(x). Show that
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(Write [0, 1] as a union of n sub-intervals.)

3. Let f : [0,1] = R be continuously differentiable with f(0) = 0. Show that
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